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Figure 1: Results from our intrinsic image decomposition method that can jointly predict albedo, shading, and surface normal
layers from a single image. These decomposed layers enable various editing tasks, such as image relighting and retexturing.
Source: 3DarcaStudio, stock.adobe.com.

ABSTRACT
Reasoning about the intrinsic properties of an image, such as albedo,
illumination, and surface geometry, is a long-standing problemwith
many applications in image editing and compositing. Existing so-
lutions to this ill-posed problem either heavily rely on manually
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designed priors or learn priors from limited datasets that lack di-
versity. Hence, they fall short in generalizing to in-the-wild test
scenarios. In this paper, we show that a large-scale text-to-image
generation model trained on a massive amount of visual data can
implicitly learn intrinsic image priors. In particular, we introduce a
novel conditioning mechanism built on top of a pre-trained founda-
tional image generation model to jointly predict multiple intrinsic
modalities from an input image. We demonstrate that predicting
different modalities in a collaborative manner improves the overall
quality. This design also enables mixing datasets with annotations
of only a subset of the modalities during training, contributing to
the generalizability of our approach. Our method achieves state-of-
the-art performance in intrinsic image decomposition, both qualita-
tively and quantitatively. We also demonstrate downstream image
editing applications, such as relighting and retexturing.
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1 INTRODUCTION
Understanding the intrinsic layers of an image reveals a scene’s
inherent properties. A typical intrinsic decomposition of an image
I can be represented as (i) the reflectivity of the surfaces depicted
in the image, denoted as the albedo layer A, (ii) the interaction
between the light and the surfaces, denoted as the shading layer
S, and (iii) the direct underlying surface geometry, denoted by
the normal layer N. Understanding such properties from a single
image is useful for various editing tasks, such as relighting [Basri
and Jacobs 2003], retexturing [Jafarian et al. 2023; Ye et al. 2023;
Zheng et al. 2022], and realistic image composition [Careaga and
Aksoy 2023]. As such, intrinsic image decomposition has been one
of the most fundamental tasks in computer graphics [Barrow and
Tenenbaum 1978], and the pursuit of accuracy has lasted for decades.
In this paper, we introduce a method that can jointly predict the
intrinsic layers of albedo, shading, and surface normal from a single
image, as shown in Figure 1.

Predicting the intrinsic properties from a single image is chal-
lenging for the following reasons. First, the same image can be
represented by different combinations of intrinsic layers, making
this problem a highly ill-posed task. Existing solutions either use
manually crafted regularization priors or learn such priors from
data to tackle this problem in a deterministic fashion. Second, ex-
isting scene-level datasets used for this task are either synthetic
or only sparsely annotated since annotating intrinsic layers for
real images is not straightforward. Developing a solution that can
generalize to in-the-wild test cases is therefore not easy.

In the meantime, we are witnessing a revolution in large-scale
text-to-image diffusion models in terms of the quality and the diver-
sity of the images they can generate [Rombach et al. 2022]. Being
trained on massive amounts of data, such foundational models learn
to understand the implicit properties of scenes, such as different
lighting conditions and appearance changes as shown in Figure 2.
Such an understanding is critical to learning a general and effective
prior. Moreover, being generative, such a model is suitable to tackle
the ambiguous nature of the intrinsic image decomposition task.
Hence, the main question we ask is “How to effectively repurpose
a pre-trained foundational image generation model for our task?”

The main difficulty in direct finetuning or continued training of
the foundational model for our task stems from the fact that the

“... uniformly lit” “... strong sunlight” “... dimly lit”

Figure 2: We generate images of a room using a pre-trained
latent diffusion model with different lighting condition
prompts. As shown, the model has implicit knowledge of
the intrinsic image properties of the scene.

amount of training data available for intrinsic image decomposition
with ground-truth labels is orders of magnitude smaller than the
data used to train the text-to-image model. The recent ControlNet
architecture [Zhang et al. 2023] tackles a similar problem for effec-
tive conditioning of the image generation model on various control
signals using datasets of moderate size. Inspired by this success,
we propose a novel approach that utilizes ControlNet to repurpose
the text-to-image generation model for the intrinsic image decom-
position task. Given an input image as the condition to a control
model, our goal is to generate the corresponding intrinsic layers, i.e.,
albedo, shading, and surface normals. Instead of training a separate
control model for each layer, the core of our approach is a joint
control branch that adapts to each modality via different prompts.
We highlight that our multimodal learning framework allows the
network to be trained on assorted datasets with different types of
available annotations. For example, Vasiljevic et al. [2019] provide
images with accurate surface normal annotations only. The ability
to mix such datasets addresses the dataset problem to a large extent.
We also show that this framework enables learning a more effective
latent space where the prediction of one modality (e.g., surface
normals) helps to improve the prediction of other modalities (e.g.,
albedo and shading, as shown in Figure 6 and Table 3).

To improve the spatial alignment between the generated intrinsic
layers as well as to prevent spatial distortion artifacts, we further
upgrade the conditional image encoder used in ControlNet to a
sequence of residual blocks [He et al. 2016] continued with SwinV2
transformer layers [Liu et al. 2022].While theweights of the residual
blocks are shared between different modalities, we use separate
transformers to map the intermediate features to each modality.

We evaluate our method on both synthetic and real datasets. We
perform comparisons to previous approaches and show state-of-the-
art performance on various challenging cases where our method
shows strength in generalizability and visual quality, together with
competitive quantitative performance on benchmarks. We also
carefully ablate the different design choices we adapt. Finally, we
show various downstream applications such as retexturing and
relighting that benefit from our method.

In summary, our main contributions include:
• casting the intrinsic image decomposition as a conditional
generation problem that leverages a pre-trained foundational
text-to-image model;

• a novel ControlNet architecture that jointly predicts mul-
tiple intrinsic modalities (e.g., shading, albedo, and surface
normal) and achieves state-of-the-art performance;

https://doi.org/10.1145/3641519.3657472
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• the ability to combine different data sources with different
types of annotations through a joint learning framework,
improving the overall performance of our method.

2 RELATEDWORK
Intrinsic image decomposition is a classic visual computing task
that has been approached in many different ways. Traditional ap-
proaches focus on using optimization while learning-based ap-
proaches took the lead more recently. Comprehensive surveys
by Bonneel et al. [2017] and Garces et al. [2022] provide a good
overview.

2.1 Optimization-based Intrinsic Image
Decomposition

To tackle the ill-posed intrinsic image decomposition problem, opti-
mization-based approaches rely on various priors and assumptions.
This includes smooth shading [Chen and Koltun 2013; Garces et al.
2012], grayscale shading [Garces et al. 2012; Grosse et al. 2009; Zhao
et al. 2012], and albedo sparsity [Bell et al. 2014; Bi et al. 2015; Garces
et al. 2012; Gehler et al. 2011; Meka et al. 2021; Shen et al. 2011],
among other things. Several approaches also explore additional
information for disambiguation, such as 3D geometry [Chen and
Koltun 2013; Hachama et al. 2015; Meka et al. 2017; Wu et al. 2014;
Yu et al. 2013; Zollhöfer et al. 2015] or user interaction [Bousseau
et al. 2009; Meka et al. 2017; Shen et al. 2011]. Recently, several
works have also tackled the intrinsic decomposition problem in the
context of radiance fields [Choi et al. 2023; Sarkar et al. 2023; Ye
et al. 2023; Zhu et al. 2023], where multi-view images are available.
Such optimization methods are also used to aid editing tasks like
illumination editing [Huang et al. 2023; Shah et al. 2023]. While
manually crafted priors have been effective, more recently, the
trend has been to learn these priors from data, as we discuss next.

2.2 Learning-based Intrinsic Image
Decomposition

Neural networks can learn priors implicitly given sufficient training
data. An early key catalyst was the IIW dataset [Bell et al. 2014],
which provides sparse ordinal annotations on real-world “intrinsic
images in the wild” for darker/similar/brighter albedo values. This
dataset enabled the first wave of approaches that predict relative
reflective relationships [Narihira et al. 2015; Zhou et al. 2015; Zo-
ran et al. 2015]. The CGIntrinsics (CGI) dataset [Li and Snavely
2018a] was the first major dataset providing per-pixel ground-truth
albedo thanks to its synthetic nature. Since then, many convolu-
tional neural networks were proposed [Fan et al. 2018; Jin et al.
2023; Li and Snavely 2018a; Liu et al. 2020; Wang et al. 2023]. More
recent datasets like OpenRooms [Li et al. 2021b], Hypersim [Roberts
et al. 2021] and InteriorVerse [Zhu et al. 2022] further increase the
visual fidelity of synthetic data and provide high dynamic range
images. In pursuit of additional constraints, some methods have
also explored multi-task training via models that jointly learn depth
and/or normal prediction with intrinsic image decomposition [Kim
et al. 2016; Luo et al. 2020; Zhou et al. 2019]. Other approaches
learn in an unsupervised fashion from multi-illumination datasets
[Careaga and Aksoy 2023; Lettry et al. 2018; Li and Snavely 2018b].
Finally, several works [Das et al. 2023; Forsyth and Rock 2022; Luo

et al. 2023] have explored the local characteristics of the intrinsic im-
age decomposition problem, i.e., albedo predictions in overlapping
local patches should be consistent to provide additional supervi-
sion signal. Empowered by a pre-trained foundational model, our
method excels at capturing intricate details. We eliminate the priors
and assumptions employed by previous methods for the sake of
simplification, enabling our model to be fully exposed to complex
real-world data.

2.3 Generative Models and Conditional Image
Generation

Generative models have established themselves as the widespread
solution for high-quality image synthesis. Following the success of
StyleGAN [Karras et al. 2021], more recently, diffusion models [Ho
et al. 2020; Rombach et al. 2022] have dominated image generation
and editing tasks. We refer the reader to detailed surveys for both
GANs [Bermano et al. 2022] and diffusion models [Po andWetzstein
2023; Yang et al. 2023]. The generative nature of such models has
been shown to be useful to tackle various image analysis tasks such
as semantic segmentation [Li et al. 2021a], depth estimation [Sax-
ena et al. 2023a,b], and intrinsic image decomposition [Shah et al.
2023]. More recently, there have been concurrent efforts to lever-
age pre-trained image generation models for the intrinsic image
decomposition task. Bhattad et al. [2023] perform such an analysis
in the StyleGAN space. Since recent text-to-image diffusion models
leverage datasets that are orders of magnitude larger than used by
GANs, our method instead utilizes a latent diffusion model for a
similar task. The concurrent work of Kocsis et al. [2024] finetunes
stable diffusion by treating the intrinsic layers as a multi-channel
image. Hence, their method requires access to datasets that provide
annotations for all the layers during training. In a similar fashion,
Du et al. [2023] train a LoRA adaptor [Hu et al. 2022] to predict
each modality. In contrast, our work presents a multimodal train-
ing strategy with a joint image encoder that enables the mixing of
datasets with different types of available annotations.

3 METHODOLOGY
Given an input image I ∈ R𝑊 ×𝐻×3, our goal is to generate the
corresponding intrinsic layers. Specifically, we generate an albedo
layer A ∈ R𝑊 ×𝐻×3, a colored shading layer S ∈ R𝑊 ×𝐻×3, and a
surface normal map N ∈ R𝑊 ×𝐻×3. To this end, we first extract
embedding features from the input image I (Section 3.2). These
features are then mapped to domain-specific embedding vectors
that are used as conditioning input for a conditional latent diffusion
model via a ControlNet [Zhang et al. 2023] (Section 3.3). To adapt
the network to different intrinsic modalities (e.g., albedo, shading,
and surface normal), we jointly learn a set of shared residual blocks
and domain-specific transformers for feature embedding, and use
domain-specific text prompts to condition the ControlNet simulta-
neously. We illustrate our system pipeline in Figure 3 and discuss
the details in the following sections.

3.1 Preliminaries
Diffusion models [Ho et al. 2020; Sohl-Dickstein et al. 2015] consist
of a forward and a backward process. The forward process adds
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Figure 3: Overview of our pipeline. Given an input image, we extract image features using a conditional image encoder with
residual blocks. The image features are projected to domain-specific conditional vectors using SwinV2 [Liu et al. 2022] blocks
for each intrinsic modality, i.e., albedo, shading, and surface normal (Section 3.2). The generative diffusion model with a
ControlNet [Zhang et al. 2023] is trained to generate different intrinsic modalities, and acts as a function of the dedicated
prompt and conditional vectors (Section 3.3). Image source: Interior Design, stock.adobe.com.

Gaussian noise to the data to gradually remove information. In la-
tent diffusion models [Rombach et al. 2022], the data is first mapped
to a latent space via a variational autoencoder. Hence, we have

z𝑡 =
√︁
𝛼𝑡 z0 +

√︁
1 − 𝛼𝑡𝝐 , (1)

where 𝝐 ∼N(0, I) is the Gaussian noise, z0 is the clean data in the
latent space, z𝑡 is the noisy latent feature at time step 𝑡 , and 𝛼𝑡 is
computed from a fixed variance schedule. During the backward
process, a U-Net 𝝐𝜽 (·) [Ronneberger et al. 2015] is trained to restore
information by predicting the noise at a time step 𝑡 , with a loss of

L = Ez0,𝝐∼N,𝑡

[
∥𝝐 − 𝝐𝜽 (z𝑡 , 𝑡)∥22

]
. (2)

To control the generation, a cross-attention layer is implemented in
the U-Net to mix a control signal 𝝉𝜽 (y) with the intermediate layers
of the U-Net, where y is commonly set to be a prompt embedding
and 𝝉𝜽 (·) is a trainable encoder. Therefore, a generative latent
diffusion model can be trained with the following loss:

L = Ez0,y,𝝐∼N,𝑡

[
∥𝝐 − 𝝐𝜽 (z𝑡 , 𝑡,𝝉𝜽 (y))∥22

]
. (3)

Training such a diffusion model from scratch for every unique task
is extremely resource-consuming. To adapt a pre-trained diffusion
model to a new conditional task, one solution is to introduce a
control branch via ControlNet [Zhang et al. 2023]. ControlNet pre-
serves the quality and capabilities of the base model by locking its
parameters. Furthermore, such a control branch makes a trainable
copy of the U-Net encoding layers from the base model. The train-
able copy is connected to the base model with zero convolution
layers. The image generation process can then be optimized via

L = Ez0,y,𝝐∼N,𝑡,cI
[
∥𝝐 − 𝝐𝜽 (z𝑡 , 𝑡,𝝉𝜽 (y), cI)∥22

]
, (4)

where cI is the encoded control image.

3.2 Image Embedding
The original ControlNet adopts eight convolution layers to con-
vert the image space condition into a feature conditioning vector.
This provides a compact solution to capture high-level structure
or style-related information, but loses some intrinsic information,
as depicted in Figure 6. To address this issue, we propose a more

effective conditional image encoder to extract dense features from
the condition image without losing spatially-matched details. We
draw inspiration from VQ-GAN [Esser et al. 2021] and employ a
sequence of residual blocks [He et al. 2016] followed by multiple
SwinV2 transformer layers [Liu et al. 2022] to generate feature-
space conditioning vectors from the input RGB image. Specifically,
our conditional image encoder consists of eight shared layers of
residual blocks, R(·), that map I∈R𝑊 ×𝐻×3 into R(I) ∈R

𝑊
8 × 𝐻

8 ×320.
These shared layers are followed by a domain-specific transformer
T∗ (·) applied to R(I), where ‘∗’ is one of the intrinsic domains. We
initialize the weights of the image encoder randomly during train-
ing. The output of this encoder c∗I = T∗ (R(I)) is used as a condition
for the ControlNet, as discussed next.

3.3 Joint Learning of Multiple Modalities
We train a ControlNet-like generative model to jointly learn three
output modalities: albedo, shading, and surface normals. Similar to
Zhang et al. [2023], we use a latent diffusion model [Rombach et al.
2022] as the base model and freeze the weights during training. We
train the control branch by mixing the training data for different
modalities with the corresponding prompts. Specifically, we use the
name of the target modality, for example “Albedo”, as the prompt
text and encode it through the CLIP encoder [Radford et al. 2021].
This prompt is fixed and modality-specific. For a randomly sampled
time step 𝑡 , we follow the standard procedure to predict the noise
added to the latent mapping, z∗0, of the corresponding ground-truth
modality:

L = Ez∗0,P∗,𝝐∼N,𝑡,c∗I

[
∥𝝐 − 𝝐𝜽 (z∗𝑡 , 𝑡, P∗, c∗I )∥

2
2
]
, (5)

where c∗I is the conditioning image feature vector, and P∗ is the
embedding of the corresponding prompt.

During the training of the U-Net 𝝐𝜽 (·), we enforce zero signal-
to-noise ratio (SNR) when sampling the noise 𝝐 [Du et al. 2023; Lin
et al. 2024]. This improves the congruence between training and
inference, and allows the model to generate samples that are more
faithful to the original data distribution. V-prediction and V-loss
strategies [Salimans and Ho 2022] are employed by the zero-SNR
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scheduler [Lin et al. 2024] to ensure the model can learn a meaning-
ful data distribution as the signal-to-noise ratio (SNR) approaches
zero. Specifically, instead of predicting the noise, the velocity v is
predicted via the diffusion network with

v𝑡 =
√︁
𝛼𝑡𝝐 −

√︁
1 − 𝛼𝑡 z∗0, (6)

L = Ez∗0,P∗,𝝐∼N,𝑡,c∗I

[
∥v𝑡 − ṽ𝜽 (z∗𝑡 , 𝑡, P∗, c∗I )∥

2
2
]
, (7)

where ṽ𝜽 (·) is identical to 𝝐𝜽 (·) in terms of architecture, but trained
for the velocity domain.

To accommodate the multiple intrinsic modalities in the same
latent space of our diffusion model, we mix the different modalities
(i.e., albedo, shading, surface normal) during training. In particular,
we construct a single training batch by balancing the number of
annotation-input pairs for each modality, which are obtained from
various datasets (Section 4.1). Therefore, the residual blocks R(·),
the transformers T𝐴 (·), T𝑆 (·), and T𝑁 (·), and the ControlNet ṽ𝜽 (·)
can be optimised jointly during the gradient back-propagation.

The shading values in a scene can span a wide range of values
with a long-tailed distribution [Careaga and Aksoy 2023]. As our
base latent diffusion model generates images in the range [0, 1], we
normalize the shading layer S ∈ [0,∞)3 using S′ = 1 − 1

1+S . Note
that the ‘1−’ is added to a typical inverse shading formula [Careaga
and Aksoy 2023] to keep the bright region in the original shading
map still bright, i.e., a monotonic mapping.

3.4 Inference of the Intrinsic Modalities
The diffusion backward pass for each modality starts from an initial
random 2D Gaussian noise and proceeds with the modality-specific
conditioning image feature vectors c∗I and their corresponding text
prompt embeddings P∗. Ourmodel adopts linear LDR images I as the
image condition. Gamma correction is inverted through I = I2.2sRGB
when the input in presented in the sRGB space. At each timestep,
velocity is predicted, which is then converted to the intermediate
latent noise maps following Salimans and Ho [2022]. Clean latent
vectors are finally decoded to images using the base model’s VQ-
VAE [Esser et al. 2021]. To reduce the impact of randomness in
initial noise sampling, we conduct diffusion processes for four initial
random seeds, and average the output images of each modality.

4 EXPERIMENTS
4.1 Implementation Details
Our model is trained using 8 NVIDIA A100 GPUs with a batch size
of 32 for 320K iterations, requiring approximately 65 hours. We
train our ControlNet with the zero SNR strategy, on a base latent
diffusion model also pre-trained with this strategy.

Training dataset. Our model is trained on a mix of datasets:
(1) 52K synthesized images from InteriorVerse [Zhu et al. 2022]
and 59K synthesized images from Hypersim [Roberts et al. 2021]
with ground-truth albedo and surface normals, and ground-
truth/computed HDR shading; (2) 9K real-world captured images
from DIODE [Vasiljevic et al. 2019] with ground-truth surface nor-
mal maps. Images are resized to 384 × 384 pixels for training. Other
implementation details are presented in Section A.1 in the Supple-
ment.

4.2 Benchmark and Metrics
IIW benchmark. We compare our albedo estimation with previ-

ous works on the real-world IIW benchmark [Bell et al. 2014]. IIW
is a scene-centric dataset, providing human judgements on the rela-
tive brightness of sparsely labelled pairs of albedo pixels, i.e., darker,
similar or brighter. Following previous methods, we use the test
split provided by Narihira et al. [2015], and evaluate methods using
the standard WHDR (weighted human disagreement rate) metric.
The WHDR metric measures the disagreement rate in the predicted
intensity orderings compared to the labels. WHDR is a perceptual
metric focusing solely on a partial property of the albedo, i.e., its
consistency. However, this metric tends to favor flattened albedo
[Wu et al. 2023] and cannot provide a comprehensive evaluation of
albedo estimation (as discussed in Section A.2 in the Supplement).

SAW benchmark. We evaluate the shading estimation according
to the average challenge precision (AP(c)) metric on the real-world
SAW benchmark [Kovacs et al. 2017]. The SAW benchmark re-
gards shading estimation as a binary classification problem: smooth
or non-smooth, and provides sparse annotations. AP(c) calculates
the average classification precision over 400 sampled smoothness
thresholds. It was originally proposed by Li and Snavely [2018a] to
focus on perceptual smoothness in challenging areas. During the
evaluation, we use the official test split of this benchmark dataset.

ARAP benchmark. We follow Careaga and Aksoy [2023] to eval-
uate pixel-wise intrinsic image predictions on the synthetic ARAP
benchmark [Bonneel et al. 2017] using dense ground truth. We
use 123 test images from 37 high-quality Lambertian scenes, each
with one or several illumination conditions. During evaluation, in-
put images are resized with a maximum dimension of 1024 pixels.
We study three scale-invariant quantitative metrics: mean-squared
error (MSE), local mean-squared error (LMSE), and DSSIM, as pro-
posed by Chen and Koltun [2013].

4.3 Comparisons
4.3.1 Baselines. We compare our approach to recent works in-
cluding CGIntrinsics [Li and Snavely 2018a], CRefNet [Luo et al.
2023], NIID-Net [Luo et al. 2020], Ordinal Shading [Careaga and
Aksoy 2023], PIE-Net [Das et al. 2022], and Zhu et al. [2022]. We
evaluate these approaches using the code and trained models re-
leased by the authors on our benchmark datasets. Considering the
characteristics of the different approaches, each model has been
trained on datasets with dense annotations, sparse annotations, or
multimodal annotations. Therefore, training on the same dataset is
not the optimal setup for the individual methods.

4.3.2 Albedo estimation. We compare the albedo estimation perfor-
mance on the real-world IIW benchmark [Bell et al. 2014] (as shown
in Figure 7 and Table 1) and synthetic ARAP benchmark [Bonneel
et al. 2017] (as shown in Table 2 and Figure 2 of the Supplement).
NIID-Net [Luo et al. 2020] is not evaluated on the ARAP dataset, as
the released checkpoint is trained with this dataset. We see that our
predicted albedo clearly outperforms other alternatives with much
better texture details and color consistency. Compared to other
methods, our model shows better generalization to in-the-wild in-
ternet images, as shown in Figure 8. Quantitatively, our method
achieves the best performance on two of the three albedo metrics in
the ARAP benchmark, and achieves on-par performance with the
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Table 1: Quantitative results on the IIW and SAW bench-
marks. We evaluate albedo in the linear RGB space using
the WHDR metric with both 10% and 20% equality thresh-
olds. Various datasets are used to train the baselines, where
IIW, SAW, and MI [2019] are real-world datasets, while NED
[2018], GTA [2018], OR [2021b], Hypersim, and InteriorVerse
are synthetic datasets. NYUv2 [2012] and DIODE are real-
world datasets with only surface normal annotations. We
highlight the top-2 scores in blue and the best in bold.

WHDR ↓

Method Training data 10% 20% AP(c) ↑

Zhu et al. [2022] InteriorVerse 34.7 24.1 —
PIE-Net [2022] NED+IIW 33.3 23.5 82.8
Li and Snavely [2018a] CGI+IIW+SAW 23.9 16.5 97.9
Ordinal Shading [2023] CGI+GTA+OR+Hypersim+MI 24.8 19.2 95.5
NIID-Net [2020] CGI+NYUv2+DIODE 23.5 17.0 98.4
CRefNet [2023] CGI+IIW 12.8 10.8 98.3

Ours InteriorVerse+Hypersim+DIODE 17.9 13.3 98.3

Table 2: Quantitative results of albedo and shading estima-
tion, and image reconstruction on the ARAP dataset. Our
model achieves the best performance in five out of seven
metrics. We highlight the best score in blue.

Albedo Shading Reconst.

Method MSE ↓ LMSE ↓ DSSIM ↓ MSE ↓ LMSE ↓ DSSIM ↓ MSE ↓

PIE-Net [2022] 0.042851 0.028001 0.159813 0.010657 0.005434 0.095594 0.000173
Ordinal Shading [2023] 0.036650 0.023871 0.155533 0.011423 0.005094 0.090179 0.000023
CRefNet [2023] 0.027791 0.016687 0.140501 0.010027 0.004971 0.091947 0.003869
Zhu et al. [2022] 0.027687 0.016514 0.136318 — — — —
Ours 0.023577 0.014083 0.139976 0.007678 0.004153 0.080421 0.003054

Input image Ours Kocsis et al. [2024]

Input ControlNet’s cond. w/o zero SNR strategy w/o real normal w/o all normal Ours final

(a)

(b)

(c)

1

Figure 4: The albedo predicted by Kocsis et al. does not match
the input appearance according to the color and the content.
Source: IIW test set.

existing state-of-the-art in terms of WHDR. Our method visually
outperforms other methods significantly.

Compared with Careaga and Aksoy [2023], our approach does
not assume that the chromaticity of the albedo is the same as that
of the input image. Thus, ours allows for different chromaticity
between the input and albedo, e.g., over-exposure (lamp in (b) of
Figure 7), under-exposure (shadows in (a) of Figure 2 in Supplement),
or complex intra-scene colorful reflections (bed in (b) of Figure 7).
Our model generates images with better quality and inpaints the
over-exposed area with reasonable content (c, d in Figure 7).

100% brightness 50% brightness 25% brightness
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Figure 5: Comparison with Ordinal Shading [Careaga and
Aksoy 2023] in brightness adjustment. Intrinsic images are
estimated from the ‘100% brightness’ LDR reference image
(assumed to be in linear space). The estimation is then used
to reconstruct the input with scaled shading intensity. Our
model enables better high dynamic range adjustment due to
the effective separation in the saturated region and recovery
of the lost albedo information. Image source: Laval Indoor
HDR Dataset [Garon et al. 2019].

CRefNet [Luo et al. 2023] adopts a strong albedo flattening prior,
and trades off fine-grained albedo performance for improved con-
sistency. Our model shows similar consistency but visually excels
in fine-grained albedo reconstruction (coffee table in (a) in Figure 7
and top sample in Figure 1 of the Supplement). Note that the WHDR
metric only considers paired samples, not reflecting the reproduc-
tion of details (as we discussed in Section A.2 in the Supplement),
which explains the disparity between the qualitative results and
the WHDR score. Furthermore, CRefNet has been trained using the
training split of the IIW benchmark, whereas our method has not.
Note that CRefNet visually underperforms compared to ours.

Finally, we provide a visual comparison to the concurrent work of
Kocsis et al. [2024] in Figure 4, as it also leverages a diffusion model
for intrinsic image decomposition. We observe that our albedo
predictions are visually more consistent with the input image.

4.3.3 Shading estimation. In Table 1 and Table 2, we show that our
method achieves competitive results on the SAW benchmark, and
quantitatively the best on the three shading metrics on the ARAP
benchmark. Since the AP(c) metric only measures the smoothness
of the shading and cannot measure the correctness of the shading
color, we also demonstrate visual comparisons in Figure 2 in the
Supplement, where our shading results show a higher similarity to
the ground truth. As shown in Figure 8, the estimation by the top-2
methods [Luo et al. 2020, 2023] on the SAW benchmark (with image
resolutions less than 512) degrades when applied to high-resolution
1K test images. In particular, the shading estimated by Luo et al.
[2020] relies on surface normal estimation, and significantly deteri-
orates when the quality of its surface normal estimation degrades
at high resolutions. In contrast, our model exhibits consistent per-
formance when applied to high-resolution inputs.
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Input image Ours Kocsis et al. [2024]

Input ControlNet’s cond. w/o zero SNR strategy w/o real normal w/o all normal Ours final

(a)

(b)

(c)

1

Figure 6: Visual comparison of our architecture design and training strategy ablations on the IIW test set. The albedo contrast
in (b) has been enhanced for visual comparison. The ControlNet’s image condition encoder causes significant color information
loss, while color estimation is biased without the zero SNR strategy (a). As labelled, (a) more shadows are removed from the
albedo; (b) input intensity variations are more accurately classified as caused by albedo variation or shading (shape) variation;
(c) shading contains fewer texture residuals.

Table 3: Ablation studies on the architecture design and training strategy, evaluated on the ARAP (scale-invariant MSE, LMSE
and DSSIM metrics), IIW (WHDR metric) and SAW (AP(c) metric) benchmarks. All the models are tested on images with the
maximum dimension of 1024. ‘A’ indicates albedo estimation. ‘S’ indicates shading estimation. ‘N’ indicates surface normal
estimation. For the training data, ‘I’ indicates InteriorVerse, ‘H’ indicates Hypersim, ‘D’ indicates DIODE. We highlight the
top-2 scores in blue and the best in bold.

Albedo Shading Reconstr.
Method Train data Task MSE ↓ LMSE ↓ DSSIM ↓ MSE ↓ LMSE ↓ DSSIM ↓ MSE ↓ WHDR ↓ AP(c) ↑
use ControlNet’s image condition I+H+D A+S+N 0.029833 0.019146 0.148157 0.008580 0.004748 0.082044 0.004020 15.7 98.6
w/o zero SNR strategy I+H+D A+S+N 0.023472 0.013130 0.145799 0.009253 0.004935 0.095516 0.004992 14.5 98.0
w/o real surface normal data I+H A+S+N 0.025562 0.015425 0.138207 0.008182 0.004445 0.082764 0.002598 15.7 97.8
w/o all surface normal data I+H A+S 0.025311 0.015230 0.139936 0.007779 0.004175 0.081222 0.002407 14.6 98.2
Ours final I+H+D A+S+N 0.023577 0.014083 0.139976 0.007678 0.004153 0.080421 0.003054 13.3 98.3

As shown in Figure 7, Ordinal Shading and PIE-Net fail to ac-
curately decode the underlying surface geometry, leading to non-
smooth shading on planar areas (e.g., paintings in (b)). Our higher
AP(c) score in Table 1 further supports this observation. Addition-
ally, our approach achieves better global consistency. For example,

the headboard’s intensity in sample (b) should be similar to that
of the wall behind and the bed below. This feature is not well-
preserved by these two baseline methods.

It is worth noting that our method predicts a colorful HDR shad-
ing with RGB channels, which is essential in image editing tasks.
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Ordinal Shading [2023] is also trained with the HDR shading data.
However, as shown in Figure 5, our estimated shading for the over-
saturated area has a wider range and can be used to adjust the
brightness of the scene faithfully.

4.3.4 Surface normal estimation. Visual comparison with methods
that jointly predict surface normals (Luo et al. [2020] and Li et al.
[2020]) is shown in Figure 8. Our method achieves a significantly
better performance while the baselines failed to generate meaning-
ful outputs. Quantitative results are presented in Section A.4 in the
Supplement.

4.4 Ablation Studies
4.4.1 Joint embedding of multiple modalities. One of our key in-
sight is that jointly learning different modalities improves the over-
all quality. To verify this, we trained one model that does not pre-
dict surface normals and one model without using the real DIODE
dataset. As shown in Figure 6 and Table 3, the realistic surface
normal annotations from Vasiljevic et al. [2019] help the network
perform better in albedo and shading estimation. Notably, surface
normal estimation especially benefits sample (b), where frequent
shading variations on the quilt challenge the classic "smooth shad-
ing" assumption. We believe our model gains a deeper understand-
ing of shape variations from real-world DIODE data, enabling it to
decide whether to predict smooth shading or not in each specific
case.

4.4.2 Conditional image encoder. We also ablate the architecture
of the image encoder T∗ (R(·)) by training a model variant adopting
the ControlNet’s original convolution-based encoder. As shown in
Figure 6 and Table 3, our powerful image encoder better aligns the
color between the input and the predictions.

4.4.3 Training with zero SNR. We further compare the models
trained with and without the zero SNR noise scheduler. During
training, we replace the base latent diffusion model with a ver-
sion trained without the zero SNR but still in the velocity domain.
Figure 6 shows that applying zero SNR provides a more effective
strategy for aligning the color distribution of the intrinsic layers.
Without this strategy, significant image reconstruction degradation
occurs, as shown in Table 3.

4.5 Image Editing
Intrinsic layers are essential for various editing applications. We
provide examples of relighting and retexturing in Figure 1. Imple-
mentation details are described in Section A.5 in the Supplement.

5 CONCLUSION AND LIMITATIONS
In this work, we presented an approach that leverages a pre-trained
text-to-image foundation model to tackle the intrinsic image de-
composition problem. We showed that the intrinsic information
encoded in the foundational model can be effectively extracted
through a novel conditioning mechanism that jointly predicts mul-
tiple intrinsic modalities. We evaluated our method thoroughly
via qualitative and quantitative comparisons, and demonstrated
editing applications. Given the nature of a data-driven approach,
the performance of our model declines when it is applied to out-
of-the-distribution scenarios, such as deeply folded fabrics, due to

the domain gap between training and testing data. This will also
affect the reconstruction of the input image from the intrinsic layers
as the reconstruction error is not explicitly supervised during the
model training.
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Figure 7: Visual comparison of intrinsic image decomposition on the IIW test set [Bell et al. 2014]. For each sample, we show
albedo (top) and shading (below) images. We show our surface normal predictions in the first column of each second row.
Intrinsic image results are shown in the linear RGB space. Our model achieves the best perceptual performance. For example,
our model effectively removes strong highlight shading from the estimated albedo (c and d) while preserving detailed wooden
textures on the floor (c). Our shading is smooth and has minimal albedo residuals on the floor (a) and the paintings (b). Besides,
our model captures the color of shading, which can benefit downstream image editing applications.
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Figure 8: We evaluate our approach and the baselines with internet images at 1K resolution. For each sample, we show albedo
(top), shading (middle) and surface normal (bottom) images. Intrinsic image results are shown in the linear RGB space. Our
model is less sensitive to the input image resolution and consistently produces plausible intrinsic layer estimation. Image
source: schanya, stock.adobe.com (top); Logan Stone, Unsplash (bottom).
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